Award Details
There were no results found for that query.
Try a new search or return to previous page to try again.
Loading company results...
Phase II
ATOM COMPUTING INC.
-
ATOM COMPUTING INC.
SBIR Phase II: Spatially Modulated Light For Trapping And Addressing Of Alkaline-Earth Neutral Atom Qubits
Contact
11250 SUN VALLEY DR
Oakland, CA 94605-5736
NSF Award
1951188 – SBIR Phase II
Award amount to date
$750,000
Start / end date
04/01/2020 – 03/31/2022
Errata
Please report errors in award information by writing to awardsearch@nsf.gov.
Abstract
The broader impact of this Small Business Innovation Research (SBIR) Phase II project will result from the development of a scalable, universal quantum computing platform. The range of applications are broad and will expand in parallel with the development of new quantum algorithms, with initial applications including molecular simulations for the chemical and pharmaceutical industries, currently limited by the approximations necessary to make calculations tractable for classical computers. In order to perform these simulations at a scale useful for commercial applications, quantum computing must be significantly scaled. The proposed system will develop a new method to trap and control individual atoms for scaling of quantum computers.
This Small Business Innovation Research (SBIR) Phase II project will develop technology for parallel, high-fidelity single- and multi-qubit gates in neutral atom quantum computers. The technology will enable neutral atoms as a platform for scalable quantum computing technology with fault-tolerant capabilities. The proposed project includes: 1) development of systems to control atomic qubits in parallel; 2) a methodology to enact high-fidelity gates; and 3) development of necessary infrastructure for a cloud-accessed quantum computer. With a previously unrealized degree of coherent control to atomic systems, the proposed system will serve as an entirely novel tool to study many-body physics, enabling new quantum simulations of new phases of matter or high-energy physics.
This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Phase I
ATOM COMPUTING INC.
-
ATOM COMPUTING INC.
SBIR Phase I: Spatially Modulated Light For Trapping And Addressing Of Alkaline-Earth Neutral Atom Qubits
Contact
11250 SUN VALLEY DR
Oakland, CA 94605-5736
NSF Award
1843926 – SBIR Phase I
Award amount to date
$225,000
Start / end date
02/01/2019 – 01/31/2020
Errata
Please report errors in award information by writing to awardsearch@nsf.gov.
Abstract
The broader impact/commercial potential of this Small Business Innovation Research (SBIR) Phase I project will result from the development of quantum computers that will impact many technologies by enabling, for example, molecular simulations for drug design and catalyst development for energy applications, quantum machine learning, and solving optimization problems such as scheduling. Scalable, universal quantum computing promises to be one of the most transformative technologies of the modern era. The range of applications are broad and will only expand with the development of new quantum algorithms, with one of the biggest opportunities being molecular simulations for the chemical and pharmaceutical industries. For example, despite being a multi-billion dollar industry, computational drug discovery is limited by the approximations necessary to make calculations tractable for classical computers. In order to perform these simulations at a scale useful for commercial applications, qubit numbers must be increased several orders of magnitude beyond the state of the art. The proposed innovation of trapping and individual control of neutral atoms will, if successful, enable quantum computers to scale to the thousands of qubits needed for error-corrected, universal quantum computing.
This Small Business Innovation Research Phase I project will develop technology for scalable trapping and addressing of neutral atom qubits through dynamic, parallelized optical trapping and individual addressing of alkaline earth qubits. Neutral atoms are an emerging platform for quantum computing and the majority of work thus far has been directed towards alkali atoms (i.e., those with a single valence electron). Alkaline earth atoms have two valence electrons and correspondingly a richer energy level structure, which has demonstrated very long trapped coherence times.
This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Company Profile
This information has been provided by
Disclaimer: Company Data presented by NSF: (1) is the property of and proprietary to PitchBook Data, Inc.; (2) may not be copied, reproduced, or distributed; and (3) is not warranted to be accurate, complete nor timely. Neither PitchBook Data nor the National Science Foundation are responsible for any damages or losses arising from any use of such Data.
Award Histories
To view related awards from NSF startups and small businesses click the link below.